skip to main content


Search for: All records

Creators/Authors contains: "Dismukes, Avalon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3GeTe2(FGT) are reported. The orientation of the exchange bias is along the in‐plane easy axis of CrSBr, perpendicular to the out‐of‐plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in‐plane exchange bias provides sufficient symmetry breaking to allow deterministic spin–orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non‐zero exchange bias at 30 K.

     
    more » « less
  2. Abstract

    Magnetic van der Waals (vdW) materials are a promising platform for producing atomically thin spintronic and optoelectronic devices. The A‐type antiferromagnet CrSBr has emerged as a particularly exciting material due to its high magnetic ordering temperature, semiconducting electrical properties, and enhanced chemical stability compared to other vdW magnets. Exploring mechanisms to tune its magnetic properties will facilitate the development of nanoscale devices based on vdW materials with designer magnetic properties. Here it is investigated how the magnetic properties of CrSBr change under pressure and ligand substitution. Pressure compresses the unit cell, increasing the interlayer exchange energy while lowering the Néel temperature. Ligand substitution, realized synthetically through Cl alloying, anisotropically compresses the unit cell and suppresses the Cr‐halogen covalency, reducing the magnetocrystalline anisotropy energy and decreasing the Néel temperature. A detailed structural analysis combined with first‐principles calculations reveals that alterations in the magnetic properties are intricately related to changes in direct Cr–Cr exchange interactions and the Cr–anion superexchange pathways. Further, it is demonstrated that Cl alloying enables chemical tuning of the interlayer coupling from antiferromagnetic to ferromagnetic, which is unique among known two‐dimensional magnets.

     
    more » « less
  3. Abstract

    The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However, current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here the magnetic and electronic properties of CrSBr are reported, an air‐stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its Néel temperature,TN= 132 ± 1 K, CrSBr adopts an A‐type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is ΔE= 1.5 ± 0.2 eV with a corresponding PL peak centered at 1.25 ± 0.07 eV. Using magnetotransport measurements, strong coupling between magnetic order and transport properties in CrSBr is demonstrated, leading to a large negative magnetoresistance response that is unique among vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin‐based electronics.

     
    more » « less